

Code No.: 5423/N

FACULTY OF ENGINEERING

B.E. 2/4 (E & EE) II Semester (New) (Main) Examination, May/June 2012 ELECTRICAL CIRCUITS – II

Time: 3 Hours]

[Max. Marks: 75

Note: Answer **all** questions of Part – **A**. Answer **five** questions from Part – **B**.

PART-A

25 Marks

- Explain about various types of energy sources for networks.
- 2. Draw the transform networks for inductance and capacitance.
- 3. What is the L.T. of f(t-T) u(t-T) and tf(t)?
- 4. Determine the L.T. of the waveform shown.

- 5. Explain the time shifting property of L.T.
- 6. State the differentiation theorem of Fourier transform.
- 7. Find the Fourier transform of $\sin \omega_0 t$ and $\cos \omega_0 t$.
- 8. Find $L^{-1} \frac{2s}{(s+1)(s^2+2s+2)}$.
- 9. What is a positive real function? Write down the properties of PR functions.
- 10. Check whether the function $F(s) = \frac{s^2 1}{-s + 8}$ is a PR function or not.

3

3

PART-B

Code No.: 5423/N

50 Marks

11. Find i(t) for t > 0 in the figure shown below. The initial conditions of inductor and capacitor are as shown.

- 12. Explain clearly the method of waveform synthesis using Laplace transforms.
- Find the transfer function H(s) = I₂ (s)/v(s) for the following circuit. Also find the impulse response h(t).

Code No.: 5423/N

15. Determine the Fourier transform of the triangular waveform shown.

10

16. a) Explain briefly test procedure for positive real function.

5

b) Is the following polynomial Hurwitz?

L

$$p(s) = s^6 + 4s^5 + 8s^4 + 20s^3 + 19s^2 + 16s + 12$$

17. Synthesis the driving point impedance function using foster first form of realization. 10

$$z(s) = \frac{(s+1)(s+3)(s+5)}{s(s+2)(s+4)(s+6)}$$