FACULTY OF ENGINEERING \& INFORMATICS

B.E. I Year (New) (Common to all branches) (Main) Examination, June 2011 MATHEMATICS - I

Time : 3 Hours]

[Max. Marks : 75
Note : Answer all questions from Part - A. Answer any five questions from Part - B.

PART - A

1. Using the Lagrange's mean value theorem, show that $\sin B B^{B} A B Y \leq|B-a| .2$
2. Find the envelope of the family of curves $y=3 c x-c^{3}$, orisaparameter.
3. If $f(x, y, z)=x y+y z+z x, x=t^{2}, y=t e^{t}, z=t e^{-t}$, find $\frac{d f}{d t}$.
4. Find the linear Taylor series polynomial approximation to the function $f(x, y)$ $=2 x^{3}+3 y^{3}-4 x^{2} y$ about the point $(1,2)$.
5. If $\bar{r}=x i+y j+z k$, show that $(\bar{u} \cdot \nabla) \bar{r}=\bar{u}$.
6. Find the directional derivative of the function $f(x, y, z)=2 x^{2}+y^{2}+z^{2}$ at $(1,2,3)$ in the direction of the line $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$.
7. Find the values of λ such that the rank of

$$
A=\left(\begin{array}{lll}
1 & 2 & 4 \tag{3}\\
2 & \lambda & 5 \\
4 & 8 & \lambda
\end{array}\right) \text { is } 2
$$

8. Find the sum and the product of eigen values of the matrix $\left(\begin{array}{ccc}10 & 0 & 8 \\ 4 & 9 & 6 \\ 2 & 7 & 5\end{array}\right) \cdot 2$
9. Find the values of x for which the series $\sum(4 x)^{n}$ is convergent.
10. Show that the series $\sum \frac{\sin n x}{n^{2}}$ converges absolutely.

PART - B

(Marks : 50)
11. (a) Find the radius of curvature of the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ at $\theta=\pi$.
(b) Find the evolute of the curve $x=2 a t, y=a t^{2}$.
12. (a) Trace the curve $r=a(1+\cos \theta)$.
(b) Show that $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2}+y^{2}}{x-y} & , \\ 0, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$ is not continuous at $(0,0)$.
13. (a) Prove that curl $(f \overline{\mathrm{~V}})=(\operatorname{grad} \mathrm{f}) \times \overline{\mathrm{V}}+\mathrm{f}$ curl $\overline{\mathrm{V}}$.
(b) Using Green's theorem, evaluate $\oint_{c}\left(x^{2}+y^{2}\right) d x+(y+2 x) d y$, where C is the boundary of the region bounded by the curves $\mathrm{y}^{2}=\mathrm{x}$ and $x^{2}=y$.
14. (a) If $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$, show that $A^{n}=A^{n-2}+A^{2}-I, n \geq 3$ using CayleyHamilton theorem.
(b) Reduce $A=\left(\begin{array}{rrr}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right)$ to the diagonal form.
15. Discuss the convergence of the series.
(a) $1+\frac{2!}{2^{2}}+\frac{3!}{3^{3}}+\frac{4!}{4^{4}}+$
(b) $\sum \frac{\mathrm{n}^{n} x^{n}}{\mathrm{n}!}, x>0$.
16. (a) If $f(x, y)=\left\{\begin{array}{ll}\frac{x y^{3}}{x+y^{2}} & ,(x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{array}\right.$, compute $\frac{\partial^{2} f}{\partial y \partial x}(0,0)$.
(b) Find the minimum value of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the condition $x y z=a^{3}$.
17. (a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d v$. 5
(b) Test whether the vectors $(1,1,0,1),(1,1,1,1),(4,4,1,1),(1,0,0,1)$ are linearly independent or not.

