

Code No.: 5002/M

FACULTY OF ENGINEERING & INFORMATICS

B.E. I Year (Common to all branches) Examination, May/June 2012

MATHEMATICS - I

Time: 3 Hours]

[Max. Marks: 75

Answer **all** questions from Part-A. Answer any **five** questions from Part-B.

Part A — (Marks : 25)

1. Are these vectors linearly dependent, verify

3

(2, 1, 0), (1, 2, 5), (5, 4, 5)

2. Find the sum of the Eigen values of the matrix

2

$$A = \begin{bmatrix} 2 & 5 & 3 & 1 \\ 1 & 6 & 3 & 2 \\ 3 & 4 & 1 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix}.$$

3. Test the convergence of $\sum \left[\frac{(-1)^n}{n(n^2+1)} \right]$.

3

4. Discuss the convergence of $\sum \frac{(n^3+4)n}{(n^2+1)(n^2+4)}$.

2

5. Expand $f(x) = \tan x$ about $x = \frac{\pi}{4}$ upto x^4

3

6. Find the radius of curvature of $x^2 + y^2 = 16$ at any point on this curve.

2

7. Determine
$$\lim_{(x,y)\to(1,1)} \frac{x(y-1)}{y(x-1)}$$
.

3

8. If
$$Z = \log [x^2 + xy + y^2]$$
 then find $x \frac{jz}{jx} + y \frac{jz}{jy}$.

2

9. Evaluate $\iint xy^2 dx$ over the first quadrant of $x^2 + 2^3y^2 = 4$.

3

5

10. Find the directional derivative of $f(x, y) = x^2 + y^3$ at (1, 1) in the direction of 3i + 4j.

Part B — (Marks : 50)

11. (a) Using Cayley - Hamilton theorem, find the inverse of
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -1 \\ 2 & -4 & -4 \end{bmatrix}$$
.

(b) Reduce the quadratic form 2xy + 2yz + 2zx to canonical form.

12. (a) Discuss the convergence of $\sum_{n=1}^{\infty} \left[\frac{n^3 + \alpha}{2^n + \alpha} \right]$.

(b) Text the series $\sum \frac{[(n+1)x]^n}{n^{n+1}}$ for convergence

13. (a) Verify Lagrange's mean value theorem for f(x) = (x-1)(x-2)(x-3) in [0, 4].

(b) Find the envelope of the family of straight lines $x \cos x + y \sin x = p$ where α is α parameter.

14. (a) Find the radius of curvature of $\sqrt{x} + \sqrt{y} = \sqrt{\alpha}$ at $\left(\frac{\alpha}{4}, \frac{\alpha}{4}\right)$.

(b) Find maximum and minimum values of $f(x \cap y) = x^3 + y^3 - 3xy$.

15. (a) Use Green's theorem to evaluate

 $\int_{c} [(2x^2 - y^2) dx + (x^2 + y^2) dy]$ where c is the boundary of the area enclosed by *x*-axis and the upper half of circle $x^2 + y^2 = \alpha^2$.

(b) If \overline{A} is a constant vector and $\overline{R} = xi + yi + 3k$ then find $\nabla x (\overline{R} \times A)$.

16. (a) Reduce the matrix $\begin{bmatrix} 2 & 1 & -6 & -3 \\ 3 & -3 & 2 & 1 \\ 1 & 1 & 2 & 1 \end{bmatrix}$ to normal form and find its rank.

- (b) Discuss the convergence of the series $\sum \frac{1}{n^p}$, p > 0.
- 17. (a) If $x = r \cos \theta$, $y = r \sin \theta$, find $\left(\frac{\partial r}{\partial x}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2$.
 - (b) Evaluate $\iint_{S} \overline{F} \cdot \overline{n} ds$.

where $\overline{F} = (2x + 3z) i - (xz + y)i + (y^2 + 2z) K$ and s is the surface of the sphere having centre at (3, -1, 2) and radius 3.