FACULTY OF ENGINEERING and INFORMATICS

B.E. I – Year (Main) Examination, June 2014

Subject : Mathematics - I

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART – A (25 Marks)

1 2 3	Define rank of a matrix. Show that the vectors (1, 2, 3), (2, 3, 4) and (3, 4, 5) are linearly dependent. State the necessary condition for a positive series $\sum a_n$ to be convergent.		(2) (3) (2)
4	Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.		(3)
5 6	Using the Lagrange mean value theorem, show that $ \sin b - \sin a \le b - a $. Find the radius of curvature for the curve y = x ² – 6x + 10 at (3, 1).		(2) (3)
7	Show that $\lim_{(x,y)\to(0,0)} \frac{x^3 y}{x^6 + y^2}$ does not exist.		
8 9 10	Exp (2, Fin Sho	band $f(x, y) = x^2 + 3y^2 - 9x - 9y + 26$ in Taylor series of maximum order abou 2). d ∇f , if $f(x, y, z) = \log_e (x^2 + y^2 + z^2)$ by that the vector $(x^2 + yz)i + (4y - z^2x)j + (2xz - 4z)k$ is solenoidal	t (3) (2) (3)
PART – B (50 Marks)			
11	a)	Test for consistency and solve $2x - 3y + 7z = 5$, $3x + y - 3z = 13$, $2x + 19y - 47z = 32$.	(5)
	b)	Verify Cayley - Hamilton theorem for the matrix $A = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$.	(5)
12	a)	Discuss the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n+2}{n+3}\right)^n x^n$	(5)
13	b) a) b)	Test the series $\sum \left[\sqrt{n^4 + 1} - \sqrt{n^4 - 1} \right]$ for convergence. Verify Rolle's theorem for the function $f(x) = (x + 2) (x - 3)$ in the interval [-2, 3]. Find the evolute of the curve $x^2 = 4ay$.	(5) (5) (5)
14	a)	Find all asymptotes of the curve $y = x + \frac{1}{x}$.	(5)
15	b) a)	Discuss the maxima and minima of $f(x, y) = 4x^2 + 2y^2 + 4xy - 10x - 2y - 3$. Show that $\nabla^2 r^n = n(n+1)r^{n-2}$, where $r = \bar{r} , \bar{r} = xi + yj + zk$.	(5) (5)
	b)	If S is any closed surface enclosing a volume V and $\overline{F} = axi + byj + czk$, prove that $\int_{S} \overline{F} \cdot \overline{N} ds = (a + b + c)V.$	e (5)
16	a)	Find the eigen values and the corresponding eigen vectors of $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 1 \\ 0 & 0 & 6 \end{pmatrix}$.	(5)
	b)	Discuss convergence of $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} - \frac{1}{5^2} + \dots$	(5)
17	Verify Green's theorem for $\int_{C} \left[(3x - 8y^2) dx + (4y - 6xy) dy \right]$, where C is the boundary of		
		the region bounded by $x = 0$, $y = 0$ and $x + y = 1$.	(10)
