FACULTY OF ENGINEERING and INFORMATICS

B.E. I - Year (Main) Examination, June 2014

Subject: Mathematics-I
Time: 3 hours
Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B. PART - A (25 Marks)

1 Define rank of a matrix.
2 Show that the vectors (1, 2, 3), (2, 3, 4) and (3, 4, 5) are linearly dependent.
3 State the necessary condition for a positive series $\sum a_{n}$ to be convergent.
4 Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$.
5 Using the Lagrange mean value theorem, show that $|\sin b-\sin a| \leq|\mathrm{b}-\mathrm{a}|$.
6 Find the radius of curvature for the curve $y=x^{2}-6 x+10$ at $(3,1)$.
7 Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}$ does not exist.
8 Expand $f(x, y)=x^{2}+3 y^{2}-9 x-9 y+26$ in Taylor series of maximum order about (2, 2).
9 Find ∇f, if $f(x, y, z)=\log _{e}\left(x^{2}+y^{2}+z^{2}\right)$
10 Show that the vector $\left(x^{2}+y z\right) i+\left(4 y-z^{2} x\right) j+(2 x z-4 z) k$ is solenoidal
PART - B (50 Marks)

11 a) Test for consistency and solve $2 x-3 y+7 z=5,3 x+y-3 z=13$, $2 x+19 y-47 z=32$.
b) Verify Cayley - Hamilton theorem for the matrix $A=\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)$.

12 a) Discuss the convergence of the series $\sum\left(\frac{n+2}{n+3}\right)^{n} \mathrm{x}^{\mathrm{n}}$
b) Test the series $\sum\left\lfloor\sqrt{n^{4}+1}-\sqrt{n^{4}-1} \mid\right.$ for convergence.

13 a) Verify Rolle's theorem for the function $f(x)=(x+2)(x-3)$ in the interval [-2, 3]. (5)
b) Find the evolute of the curve $x^{2}=4 a y$.

14 a) Find all asymptotes of the curve $y=x+\frac{1}{x}$.
b) Discuss the maxima and minima of $f(x, y)=4 x^{2}+2 y^{2}+4 x y-10 x-2 y-3$.

15
a) Show that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$, where $r=|\bar{r}|, \bar{r}=x i+y j+z k$.
b) If S is any closed surface enclosing a volume V and $\bar{F}=a x i+b y j+c z k$, prove that $\int_{S} \bar{F} \cdot \bar{N} \mathrm{ds}=(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{V}$.
16 a) Find the eigen values and the corresponding eigen vectors of $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 1 \\ 0 & 0 & 6\end{array}\right)$.
b) Discuss convergence of $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}-\frac{1}{5^{2}}+\ldots \ldots \ldots$.

17 Verify Green's theorem for $\int_{C}\left[\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$, where C is the boundary of the region bounded by $x=0, y=0$ and $x+y=1$.

