CO No.	Course outcome	POs, PSOs
		mapped
M	Define and describe FMS, differentiate between	PO1, PO3, PO8,
2113.1	cellular manufacturing and FMS, FMS layouts.	PO12.
	describe Planning and preparation guidelines for	
	FMS	
M2113.2	Define and describe Just in time manufacturing and	PO1, PO2, PO8,
	its benefits, describe group technology	PO12.
	classification and coding and its benefits.	
M2113.3	Design FMS using bottleneck and extended bottle	PO1, PO2, PO3,
	neck models, describe construction and operation of	PO5, PO7, PO8,
	turning and machining centre, coordinate	PO12.
	measuring machine.	
M2113.4	Describe Automated storage and retrieval system,	PO1, PO3, PO4,
	AGVS. Design storage space, queuing carousels.	PO12.
M2113.5	Describe Tool management and specify cutting	PO1, PO2, PO3,
	tool controls, work holding and work changing	PO4, PO8, PO12.
	equipment. Describe General fixturing design of	
	manual and automated transfer lines.	
M2113.6	Describe Computer hardware and software, PLC's,	PO1, PO5, PO12.
	communication networks in FMS implementation	

Class: M.E. I year

Name of the Course: Flexible Manufacturing Systems

Course Code: ME2113

Class: M.E. I year

Name of the Course: CAD/CAM Lab (Lab -I)

Course Code: ME2431

CO No.	Course Outcome	POs, PSOs mapped
ME2431. 1	Use parametric CAD software for geometric modelling of mechanical designs and visualize of machine components and assemblies before their actual fabrication through modelling, animation, shading, rendering, lighting and coloring.	PO1, PO2, PO4, PO7, PO10, PO12,PSO2
ME2431. 2	Apply of CAD computational analysis tools to engineering design and create a complete CAD documentation for an engineering design.	PO1, PO2, PO3, PO4, PO5, PO9, PO10,PSO1,PSO 2
ME2431. 3	Model complex shapes including freeform curves and surfaces	PO1, PO2, PO7, PO9,PO10,PSO1 , PSO2
ME2431. 4	Explain the basic concepts of CNC programming and machining	PO1, PO2, PO3, PO10, PO11, PO12, PSO1,PSO2
ME2431. 5	Implement CNC programs for milling and turning machining operations	PO1, PO2, PO3, PO4, PO5, PO10, PO11,PO12,PSO 1, PSO2

Class: M.E. I year

Name of the Course: Computation Laboratory

Course Code: ME 2032

CO No.	Course Outcome	POs, PSOs
		mapped
ME2032.	Classify the types of Trusses (Plane Truss &	PO1,PO2,
1	Spatial Truss), Corner bracket , Beams (2D &	PO4,PO5,PSO1
	3D) with various cross sections to determine	
	Stress, Strains and deflections under static,	
	thermal and combined loading	
ME2032.	Generalize Plane stress, plane strain	PO1,PO2,PO4,
2	conditions & also determine the stress and	PSO1
	deflection of beam.	
ME2032.	Analyse cylindrical shell, performing	PO1,PO2,PO4,
3	analysis on flat & curved shells using	DC01
	axisymmetric shell element to determine	PSO1
	stresses, strains with different boundary	
	conditions.	
ME2032.	Predict the natural frequencies and modes	PO1,PO2,PO4,
4	shapes using Modal, Harmonic analysis. Also	PSO1
	finding the critical load using Buckling	
	analysis	
ME2032.	Simulate steady state, Transient heat	PO1,PO2,PO4,
5	transfer analysis of infinite slab, Transient	PSO1
	heat transfer of castings, and Drop test of a	
	container.	
ME2032.	Evaluate the stiffness matrix, B matrix and	PO1,PO2,PO5,
6	loading matrices of beam/ in plane/solid	PSO1
	elements.	

Class: M.E. I year

Name of the Course: Optimization Techniques

Course Code: ME2308

CO No.	Course Outcome	POs, PSOs mapped
ME2308.1	Apply simulation techniques by using Monte Carlo simulation along with random number methods for inventory controls and queuing models.	PO1,PO2,PO4
ME2308.2	Understand and apply decision theory models such as decision making under certainty, uncertainty, under risk and tree analysis for various real life problems.	l e
ME2308.3	Understand integer programing by gomorys, branch and bound methods for real application of linear programing models and mixed integer programing problems.	PO1, PO2,PSO1
ME2308.4	Apply bellmans principle of optimality of dynamic programing for research application of linear programing and capital budgeting problems.	PO1,PO2,PSO1
ME2308.5	Understand unconstrained and constrained problems by applying lagrangian and Kuhntucker conditions for research problems.	PO1,PO2,PO3,PO5 ,PSO1

Class: M.E.

Name of the Course: PRODUCT DESIGN AND PROCESS PLANNING

Course Code: ME 2111

CO No.	Course Outcome	POs, PSOs mapped
ME	Identify the functions of design of a product in a	PO1, PO3, PSO1
2111.1	system in a given situation and select a suitable	
	product ; identify the procedure for	
	technological innovation of a product; explain	
	the importance of brainstorming and Delphi	
	techniques in innovation	
ME	Explain the importance of design, human	PO 1, PO4, PSO1
2111.2	machine interaction in project selection and	
	evaluation methods including ergonomic	
	considerations	
ME2111.	Explain the importance of research in new	
3	product development; describe the process of	PSO1
	patenting including search of patents, patent	
	laws and international code and discriminate	
	the scope of IPR for a product patent.	
ME	Discuss the features of design of a new product	
2111.4	with respect to manufacture, quality testing and	PSO1
	marketing; and steps to evaluate a new product	
	for introduction;	
ME	Develop process planning including creating	PO 1, PO 9, PSO2
2111.5	process sheets; explain value engineering,	
	group technology and concurrent engineering in	
	the selection of manufacturing process.	

Class: M.E. I year

Name of the Course: Vibration Analysis and Condition Monitoring

Course Code: ME2309

CO No.	Course Outcome	POs, PSOs mapped
ME2309.1	Identify the cause of vibration and learn its effects on structures. Recall vibrations of single degree of freedom systems under free, damped and forced vibration conditions.	PO1,PO2.
ME2309.2	Formulate Mathematical expressions on Two degrees of freedom under steady state and transient characteristics of vibrations and deduce solutions for Multi degrees of freedom.	PO1,PO2,PO4, PSO1,PSO2
ME2309.3	Explain the basics of Condition Monitoring and classify various vibration measuring instrument to record and interpret the data and monitor the condition of the systems through vibration parameters.	PO1,PO2, PO7
ME2309.4	Describe monitoring techniques for structural Monitoring and effective functioning of the systems.	PO1,PO2,PO6,PO7.

Class: M.E. I year

Name of the Course: Additive Manufacturing Technologies and Applications

Course Code: ME 2112

CO No.	Course Outcome	POs, PSOs mapped
ME 2112.1	Explain the process chain of Additive manufacturing and other rapid manufacturing Processes and their classification. Differentiate Additive manufacturing and CNC machines and related details.	PO 1, PO 5
ME 2112.2	Compare different Additive manufacturing processes and select a subtractive or an AM Systems (Liquid Based & Solid Based) for a particular application for product development of engineering components.	PO 1, PO 2, PO 3, PO 5
ME 2112.3	Explain the construction of Powder Based Additive manufacturing Systems and Rapid Tooling details.	PO 1, PO3, PO5
ME 2112.4	Describe various AM Software's issues for rapid prototyping and related operations for STL model manipulation.	PO 1, PO 2, PO 5, SPO 1
ME 2112.5	Illustrate technologies used for Additive manufacturing in terms of their parameters, application, limitations, materials, equipment, outcomes and implications.	PO 8, PO12

Class: M.E. I year

Name of the Course: Automation

Course Code: ME 2301

CO No.	Course Outcome	POs, PSOs mapped
ME2301.1	Define automation and Summarize the basic concepts of automation and its significance in manufacturing industries with respect to the production economics like costs in manufacturing, Break even analysis etc.	PO1, PO2,PO11
ME2301.2	Discuss automation production lines, work part transfer mechanism, automation for machining operations including design and fabrication considerations. Explain the Detroit type automation and flow lines.	PO1, PO2, PO3
ME2301.3	Identify the assembly process, assembly systems. Design assembly line and solve problems of line balancing	PO2, PO3
ME2301.4	Identify the material handling equipment in automated industry like conveyor systems, AGVs and storage / retrieval systems	PO2, PO3, PO5
ME2301.5	Recognize various automated inspection and testing methods using sensor technologies. Predict the needs of future automated factory and the social impact.	

Class: M.E. I year

Name of the Course: Computer Aided Modeling and Design

Course Code: ME 2402

CO No.	Course Outcome	POs, PSOs mapped
ME 2402.1	Explain CAD criteria for selection of workstations, Shigle Design Process, Design criteria, Geometric modeling, entities, 2D & 3D Primitives. 2D & 3D Geometric Transformations: Translation, Scaling, Rotation, Reflection and Shearing, concatenation. Graphics standards: GKS IGES, PDES.	PO1,PO2,PO3
ME 2402.2	Define wireframe entities. Describe interpolation and approximation of curves. Explain parametric and non-parametric representation of curves. Classify different curves like circle, helix and splines. Explain Synthetic curves and the concept of NURBS.	PO1,PO2
ME 2402.3	Define and Explain Surface modeling with different analytic and synthetic surfaces with their applications. Explain the design applications. Describe different 2D transformations with concatenation.	PO1,PO2,PO3
ME 2402.4	Describe Solid Modeling Techniques such as Graph Based Model, Boolean Models, Instances, Cell Decomposition & Spatial – Occupancy Enumeration. Distinguish between the solid modeling approaches of C-rep and B-rep.	PO1,PO3,PO4, PO5
ME 2402.5	Understand the Advanced Modeling such as Feature Based Modeling, Assembling Modeling and Behavioral Modeling. Know the Design approaches of an Assembly Modeling. Explore the Capabilities of different Modeling & Analysis Packages. Know the Computer Aided Design of different mechanical components. Carryout Interference Detection by Motion analysis.	PO1,PO2,PO3, PO4,PO5

Class: M.E. I year

Name of the Course: Computer Aided Mechanical Design and Analysis

Course Code: ME 2306

CO No.	Course Outcome	POs, PSOs mapped
ME 2306.1	Apply knowledge of mathematics, sciences and	PO1,PO2,PO3,PO4
	computations in solving the stresses & strains in pressure	
	vessels	
ME 2306.2	Identify, formulate and solve problems for a given flat	PO1,PO2,PO3,PO4
	plate	
ME 2306.3	Assess the importance of fracture mechanics in designing	PO1,PO2,PO3,PO4
	a system or a component	
ME 2306.4	Evaluate and understand to solve various problems on	PO1,PO2,PO3,PO4,
	Eigen value and Eigen vectors	PO5
ME 2306.5	Understand the concept of dynamic analysis in solving	PO1,PO2,PO3,PO4
	single and multi degree freedom problems	

Class: M.E. I year

Name of the Course: Control of Dynamic Systems

Course Code: ME 2302

CO No.	Course Outcome	POs, PSOs mapped
ME 2302.1	Define first, second order and higher order systems to	PO1,PO3,PO5
	identify steady state errors for practical applications	
ME 2302.2	Apply Zero pole replacements for root locus ,Bodo plot	PO1,PO2,PO4,PO5,
	and Nyquist criteria for prediction of compensation	PO6
	techniques	
ME 2302.3	Understand state space method controllability observability	PO1,PO3,PO5,PO7
	for different mechanical systems in real life applications	
ME 2302.4	Classify nonlinear systems using phase plane techniques for	PO1,PO2,PO4,PSO1
	existence of limit cyclesfor various real life problems	
ME 2302.5	Understand concept of stability using lyapunovans absolute	PO1,PO4,PO5,PSO1
	stability for linear system linearization and non-	
	autonomous systems for research problems	

Class: M.E. I year

Name of the Course: Computer Integrated Manufacturing

Course Code: ME 2403

CO No.	Course Outcome	POs, PSOs mapped
ME2403.1	Summarize the need for CIM, evolution of CIM, fundamentals	PO1, PO2
	of CIM and the concept of concurrent engineering	
ME2403.2	Recognize the role of data base management in CIM and	PO2, PO3
	discuss about DBMS architecture, Structural Query Language	
	(SQL) and features of commercial DBMS like ORACLE etc.	
	Discuss the concept of Product Data Management(PDM)	
ME2403.3	Discuss the design process, use of computers in design and	PO2, PO3,PO5
	importance of product design within the CIM concept. Discuss	
	the production planning concepts such as MRP, lot sizing	
	techniques, MRP-II, cellular manufacturing and FMS.	
ME2403.4	Identify fundamental networking concepts that help in	PO3, PO5,
	integrating all the important components of an enterprise and	PO9,PSO2
	discuss the different types of CIM models.	
ME2403.5	Discuss the future trends of manufacturing systems like lean	PO3,PO6,PO11,
	manufacturing, concept of waste and relationship of waste to	PO12, PSO2
	profit, supply chain management and agile manufacturing.	

Class: M.E. I year

Name of the Course: Experimental Techniques and Data Analysis

Course Code: ME2110

CO No.	Course Outcome	POs, PSOs mapped
ME2110.1	Understand and apply the cutting force measurement by	PO1, PO2.
	different techniques and to generate suitable signals	
	through different transducers for the practical problems.	
ME2110.2	Apply different transducers for converting temperature	PO1,PO2,PO4,PSO1,
	into suitable signals for research problems	PSO2
ME2110.3	Understand various surface measurement aspects and its	PO1, PO2,PO7
	measurement methods for a particular problem in	
	research	
ME2110.4	Design the experiment layout at minimum cost, time and	PO1,PO2,PO4, PO6,
	to analyse the data generated from experiments for	PO7,PSO1
	better solutions	
ME2110.5	Apply Taguchi methods for different optimization	PO1,PO2,PO4, PO6,
	problems in research	PO7,PSO2

Class: M.E. I year

Name of the Course: Failure Analysis and Design

Course Code: ME 2404

CO No.	Course Outcome	POs, PSOs mapped
ME2404.1	Define design and various aspects involved in design	PO1,PO2,PO3,
	process	PO6,PO7, PO9,PO10
ME2404.2	Classify different types of creativity methods, Analyse	PO1,PO2,PO3,
	different creative and inventive problem solving	PO6,PO7, PO9,PO10
	techniques	
ME2404.3	Explain Buckling phenomenon, understand the	PO1,PO2,PO4
	concept of cylinder buckling under various loading	
	conditions	
ME2404.4	Identify what is fracture, fundamentals of fracture,	PO1,PO2,PO4
	fracture types and concepts of fatigue crack growth,	
	fatigue life prediction and various stress theories of	
	failure	
ME2404.5	Describe the basic crack propagation concept, its	PO1,PO2,PO4
	propagation under combined loading, fracture	
	toughness of weld metals.	

Class: M.E. I year

Name of the Course: Finite Element Techniques

Course Code: ME 2401

CO No.	Course Outcome	POs, PSOs mapped
ME2401.1	Summarize basic equations of elasticity and formulate	PO1 , PO2, PSO-1
	finite element modeling of one dimensional element	
	using Potential energy approach.	
ME2401.2	Formulate finite element modeling of truss and frame	PO1 , PO2,
	elements along with the concepts of transformation from	PO3,PO4,PSO-1
	local to global matrices.	
ME2401.3	Evaluate Hermitian shape function of beam element in	PO1, PO2,
	natural coordinate system.	PO12,PSO-1
ME2401.4	Develop stiffness matrix for a plane stress & plane strain	PO1 , PO2,
	conditions on a CST, Axisymmetric elements by	PO3,PO4, PSO-1
	interpolating shape functions in natural coordinate	
	system.	
ME2401.5	Evaluate the shape functions of Isoparametric elements	PO1 , PO2,
	and to present the use of numerical integration to	PO3,PO4,PSO-1
	evaluate the element matrices in typical 2D problems.	
	Formulate finite element model to steady state heat	
	transfer analysis using one & two dimensional elements.	
ME2401.6	Formulate mass and stiffness matrices of 1D & beam	PO1 , PO2,
	elements to establish Eigen values & Eigen vectors using	PO3,PO4,PO5,
	Lagarangian and Hamilton principles. Develop finite	PO12,PSO-1
	element model for 3D problems in stress analysis and	
	explain the concepts of convergence criteria.	
	Introduction to Finite Element Analysis Software.	